Tetrahedron Letters No. 12, pp 887 - 890, 1976. Pergamon Press. Printed in Great Britain.

THERMOLYSIS OF <u>SYN- AND ANTI-TRICYCLIC</u> [5 1 0 0^{3,5}]OCTAN-2-YLIDENE <u>CIS-1-ALLYL-2-ETHYNYLCYCLOPROPANE</u>

William R Dolbier, Jr.*, O Trinidad Garza and Basil H Al-Sader¹ Department of Chemistry, University of Florida Gainesville, Florida 32611²

(Received in USA 20 October 1975; received in UK for publication 12 February 1976) An important fragmentation process of carbenes is that of the conversion of cyclopropyl carbenes to ethylenes and acetylenes ³ Recently we demonstrated the utility of this cleavage process in the synthesis of <u>cis</u>-1-ethynyl-2vinylcyclopropane, 1 ⁴

In this communication we report the similar fragmentation of the homologous carbenes, <u>syn-</u> and <u>anti-</u>tricyclo $[5 \ 1 \ 0 \ 0^{3,5}]$ octan-2-ylidene, <u>2-s</u> and <u>2-a</u>, to produce <u>cis</u>-1-allyl-2-ethynycyclopropane, <u>3</u>, and its facile thermal rearrangement to 1,2,5,7-octatetraene, 4

Carbenes $2-\underline{s}$ and $2-\underline{a}$ were generated from the pyrolysis of their respective tosylhydrazone sodium salts⁵ in a <u>drop-static</u> pyrolysis system⁴ at temperatures from 260-400° Product ratios were relatively insensitive to the initial stereochemistry of 2 At 260°, essentially pure 3 was obtained in 70% yield nmr (60MHz, CDCl₃), cyclopropyl protons-& 0 47 (m,1H), 1 02 (m,2H), 1 38 (m,1H), acetylenic proton-& 1 81 (d,1H), allylic protons-& 2 23 (m,2H), vinyl protons-ABX pattern with multiplets & 02, 5 10 and 5 95 with coupling constants $J_{1,2}=17$ 4, $J_{1,3} = 9$ 7, $J_{1,4} = 6$ 4 and $J_{5,6}= 2$ 0Hz, ir (CCl₄)(<u>inter alia</u>), 3320, 2120, 3080, 1645, 990 and 910 cm⁻¹

At temperatures >400°, the product mixture consisted largely of $\frac{4}{2}$ (yield $\frac{2}{3}$ 37%) nmr (100MHz, CDCl₃), pseudo heptuplet at $\delta 2$ 84 and a complex vinyl region, $\delta 4$ 74 (m,1H), 4 84-5 32 (m,3H) and 5 50-6 60 (m,3H), ir (CCl₄) (<u>interalia</u>), 1955, 3090, 3005, 1645, 1605, 995, 910, 345 and 740 cm⁻¹, uv (EtOH), λ_{max} 225 nm (ϵ 27,100) Moreover 3 was found to rearrange smoothly to $\frac{4}{2}$ either via gas phase flow pyrolysis at 410° (78%) or via static pyrolysis in isooctane (essentially quantitative)

A fragmentation related to that of $\frac{2}{2}$ has been hypothesized to rationalize the results of thermal decomposition of 5 6

Rearrangement of $\frac{3}{2}$ to $\frac{4}{2}$ involves a 1,5-hydrogen shift, and the reaction is closely analogous to the previously reported rearrangement of <u>cis</u>-1-ethynyl-2-methylcyclopropane, 6, to 1,2,5-hexatriene ⁷

A kinetic study of the reaction in the temperature range of 150-171° led to five rate constants which gave an reasonable Arrhenius plot, the equation of which was obtained by a least squares analysis

 $\log k/\sec^{-1} = 8\ 2\ +\ 0\ 5\ -\ 25,100\ +\ 1,000\ cal\ mole^{-1}/2\ 303RT$

The small pre-exponential factor is strong indication of a concerted H-shift mechanism being involved However, in order to effectively evaluate the enthalpic and entropic factors involved in this hydrogen-shift process, one would need to have available activation parameter data for molecules 6, 7, and 8 Unfortunately such data is available only for 7 ^{8,9}

A comparison, nevertheless, of the activation parameters of $\frac{3}{2}$ and $\frac{7}{2}$ reveals a probable significantly enhanced entropic demand of an ethynyl

Table^a

	^k 170° (sec ⁻¹)	Log A	E _A	∆H [‡]	<u>∆s</u> †	∆F [†]
3	6.1x10 ⁻⁵	82	25 1	24 3	-24	34 7
7	$3 9 \times 10^{-5}$	10 9	31 1	30 2	-12	354

^aunits of E_A , ΔH^{\ddagger} and ΔF^{\ddagger} are kcal/mole while those of ΔS^{\ddagger} are eugroup which is involved as the termination site for [1 5] hydrogen migration, an observation which is reminiscent of our earlier observed enhanced entropic demand of an ethynyl group involved in the Cope rearrangement of 1 as compared with cis-1,2-divinylcyclopropane ¹⁰

Additional quantitative studies of the kinetic effect of an ethynyl group on sigmatropic processes are needed to elucidate this interesting phenomenon

References

1	Department of Chemistry, College of Sciences, University of Baghdad, IRAQ				
2	We wish to acknowledge with thanks the National Science Foundation and				
	the Petroleum Research Fund administered by the American Chemical Society,				
	for partial support of this research				
3	T Sasakı, F Eguchı, M Ohno and t Umemura, <u>J</u> <u>Org</u> <u>Chem</u> , <u>38</u> , 4098				
	(1973), and references therein				
4	W. R Dolbier, Jr , O T Garza and B H Al-Sader, <u>J</u> Amer Chem Soc ,				
	97, 5038 (1975)				
5	J B Lambert, F R Koeng and J W Harnersa, J Org Chem, 36, 241 (1971)				
6.	C B Chapleo and A S Dreiding, <u>Helv Chim Acta, 57</u> , 873 (1974)				
7	V Dalacker and H. Hopf, Tetrahedron Lett , 15 (1974)				
8	R J Ellis and H M Frey, <u>J</u> Chem Soc , 5578 (1964)				
9	W R Roth and J Konig, Ann , 688, 28 (1965)				
10	J M Brown, B T Golding and J J Stofko, Jr , <u>J Chem</u> <u>Soc</u> , <u>Chem</u>				

Comm , 319 (1973).